np.random.rand(3, 5)
array([[0.31024214, 0.22749145, 0.13044336, 0.25461994, 0.52697739], [0.92107579, 0.23948126, 0.39244633, 0.14060991, 0.65208926], [0.48535859, 0.36495544, 0.68908358, 0.6986305 , 0.10662724]])
import pandas as pd
pd.DataFrame(np.random.rand(20, 40))
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.832204 | 0.617130 | 0.715202 | 0.048174 | 0.939108 | 0.694942 | 0.400874 | 0.768283 | 0.461823 | 0.752841 | ... | 0.367615 | 0.838190 | 0.590583 | 0.835761 | 0.271560 | 0.465102 | 0.000261 | 0.592607 | 0.222789 | 0.555047 |
1 | 0.788321 | 0.860006 | 0.364577 | 0.863090 | 0.329000 | 0.645932 | 0.447750 | 0.104087 | 0.118309 | 0.875203 | ... | 0.553917 | 0.856876 | 0.528867 | 0.029799 | 0.275072 | 0.084020 | 0.594230 | 0.080030 | 0.894168 | 0.263263 |
2 | 0.807275 | 0.177940 | 0.440055 | 0.946966 | 0.116133 | 0.239189 | 0.528964 | 0.697391 | 0.399538 | 0.036615 | ... | 0.399281 | 0.794940 | 0.066883 | 0.784982 | 0.125367 | 0.127151 | 0.929687 | 0.290480 | 0.546324 | 0.208128 |
3 | 0.518876 | 0.145254 | 0.768098 | 0.355796 | 0.280516 | 0.090796 | 0.065341 | 0.632886 | 0.829269 | 0.066430 | ... | 0.650922 | 0.758805 | 0.448107 | 0.664060 | 0.923742 | 0.563842 | 0.963763 | 0.634112 | 0.943547 | 0.277540 |
4 | 0.737489 | 0.088993 | 0.887788 | 0.783618 | 0.154229 | 0.646554 | 0.649964 | 0.458868 | 0.535735 | 0.419357 | ... | 0.299188 | 0.180115 | 0.244154 | 0.800606 | 0.064398 | 0.665558 | 0.502236 | 0.777374 | 0.939236 | 0.907948 |
5 | 0.211469 | 0.518740 | 0.258009 | 0.669228 | 0.507891 | 0.561564 | 0.867016 | 0.188172 | 0.749954 | 0.467626 | ... | 0.225084 | 0.441328 | 0.694882 | 0.817158 | 0.552874 | 0.537532 | 0.115093 | 0.543791 | 0.034233 | 0.778791 |
6 | 0.343946 | 0.880380 | 0.231436 | 0.192562 | 0.916107 | 0.021313 | 0.975490 | 0.219741 | 0.698656 | 0.506352 | ... | 0.512907 | 0.957507 | 0.258529 | 0.734369 | 0.757271 | 0.713988 | 0.388670 | 0.086245 | 0.663918 | 0.679773 |
7 | 0.982413 | 0.776863 | 0.352873 | 0.272454 | 0.705776 | 0.105242 | 0.649339 | 0.127062 | 0.655501 | 0.776311 | ... | 0.220118 | 0.272943 | 0.245174 | 0.436132 | 0.037625 | 0.187643 | 0.615592 | 0.058919 | 0.573035 | 0.765318 |
8 | 0.249716 | 0.687485 | 0.323589 | 0.605468 | 0.122717 | 0.607954 | 0.116775 | 0.545862 | 0.601487 | 0.510816 | ... | 0.173497 | 0.736962 | 0.436200 | 0.635635 | 0.336970 | 0.225108 | 0.066986 | 0.437094 | 0.327171 | 0.651059 |
9 | 0.477024 | 0.804410 | 0.520621 | 0.251052 | 0.512090 | 0.155425 | 0.579456 | 0.943275 | 0.022175 | 0.635136 | ... | 0.316939 | 0.631615 | 0.463521 | 0.415427 | 0.905898 | 0.898094 | 0.149950 | 0.693533 | 0.221796 | 0.966813 |
10 | 0.317880 | 0.306459 | 0.084306 | 0.713852 | 0.385076 | 0.857218 | 0.096751 | 0.397386 | 0.648722 | 0.323559 | ... | 0.188888 | 0.366867 | 0.622417 | 0.802035 | 0.446026 | 0.552871 | 0.702380 | 0.288050 | 0.553756 | 0.574177 |
11 | 0.499070 | 0.752395 | 0.996066 | 0.378952 | 0.843003 | 0.093795 | 0.310451 | 0.045367 | 0.841575 | 0.690082 | ... | 0.407933 | 0.934846 | 0.689559 | 0.071082 | 0.344150 | 0.831786 | 0.473617 | 0.914371 | 0.366394 | 0.283473 |
12 | 0.943410 | 0.720237 | 0.543442 | 0.385631 | 0.768054 | 0.591755 | 0.730742 | 0.529900 | 0.294391 | 0.495960 | ... | 0.547509 | 0.818871 | 0.806232 | 0.442937 | 0.440860 | 0.169447 | 0.584755 | 0.436921 | 0.006258 | 0.619964 |
13 | 0.179326 | 0.760713 | 0.182186 | 0.670680 | 0.678732 | 0.761327 | 0.428410 | 0.779151 | 0.747744 | 0.599381 | ... | 0.484679 | 0.529199 | 0.928070 | 0.294489 | 0.440652 | 0.106265 | 0.170487 | 0.639856 | 0.519882 | 0.987917 |
14 | 0.056025 | 0.629802 | 0.977545 | 0.658098 | 0.862397 | 0.123460 | 0.949861 | 0.059172 | 0.615887 | 0.450150 | ... | 0.324923 | 0.156255 | 0.745297 | 0.299434 | 0.566796 | 0.086708 | 0.685972 | 0.187975 | 0.770196 | 0.805439 |
15 | 0.512351 | 0.653988 | 0.769904 | 0.990763 | 0.157606 | 0.412472 | 0.467803 | 0.710103 | 0.879640 | 0.745679 | ... | 0.483111 | 0.023145 | 0.404432 | 0.331049 | 0.769805 | 0.401911 | 0.982737 | 0.708876 | 0.557452 | 0.350600 |
16 | 0.851925 | 0.700177 | 0.762888 | 0.314232 | 0.394194 | 0.009929 | 0.567694 | 0.887770 | 0.459956 | 0.384007 | ... | 0.877070 | 0.578805 | 0.682054 | 0.817754 | 0.187930 | 0.815588 | 0.288723 | 0.759027 | 0.307923 | 0.385493 |
17 | 0.620958 | 0.787456 | 0.390768 | 0.055931 | 0.775903 | 0.779081 | 0.698823 | 0.160972 | 0.860040 | 0.983636 | ... | 0.162996 | 0.808032 | 0.818766 | 0.665004 | 0.782833 | 0.460531 | 0.219354 | 0.643656 | 0.088890 | 0.051677 |
18 | 0.123906 | 0.231519 | 0.667075 | 0.008801 | 0.404813 | 0.241242 | 0.262940 | 0.560614 | 0.542335 | 0.521399 | ... | 0.534192 | 0.329566 | 0.189557 | 0.818821 | 0.545051 | 0.410484 | 0.593889 | 0.542941 | 0.949775 | 0.887700 |
19 | 0.897231 | 0.290945 | 0.371099 | 0.648910 | 0.388507 | 0.892250 | 0.640442 | 0.429782 | 0.228143 | 0.748801 | ... | 0.867375 | 0.589733 | 0.661740 | 0.532929 | 0.042675 | 0.818236 | 0.291838 | 0.270660 | 0.576204 | 0.596013 |
20 rows × 40 columns
import seaborn as sns
Works quite well with small arrays.
sns.heatmap(np.random.rand(3, 5), annot=True)
<matplotlib.axes._subplots.AxesSubplot at 0x12097a110>
... but the solution doesn't scale well:
sns.heatmap(np.random.rand(20, 40), annot=True)
<matplotlib.axes._subplots.AxesSubplot at 0x11feed650>
This is why ndpretty
was born.